Bundles over Quantum RealWeighted Projective Spaces
نویسندگان
چکیده
منابع مشابه
Bundles over Quantum RealWeighted Projective Spaces
The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...
متن کاملOn Stable Vector Bundles over Real Projective Spaces
If X is a connected, finite CJF-complex, we can define iKO)~iX) to be [X, BO] (base-point preserving homotopy classes of maps). Recall [2] that if xEiKO)~iX), the geometrical dimension of x (abbreviated g.dim x) can be defined to be the smallest nonnegative integer k such that a representative of x factors through BO(k). If $ is a vector bundle over X, the class in (PO)~(X) of a classifying map...
متن کاملStably extendible vector bundles over the quaternionic projective spaces
We show that, if a quaternionic k-dimensional vector bundle l' over the quaternionic projective space Hpn is stably extendible and its non-zero top Pontrjagin class is not zero mod 2, then l' is stably equivalent to the Whitney sum of k quaternionic line bundles provided k S; n.
متن کاملLine Bundles on Projective Spaces Preliminary Draft
0.1. Notations and Conventions. During this note, we will fix a base field k (e.g. the complex numbers C). The multiplicative group of the field k will be denoted by Gm. All the vector spaces considered will be finite dimensional vector spaces over the field k. For a given vector space V of dimension≥ 1, we will denote the dual vector space, the projective space parameterizing 1-dimensional sub...
متن کاملProjective Quantum Spaces
Associated to the standard SUq(n) R-matrices, we introduce quantum spheres S q , projective quantum spaces CP n−1 q , and quantum Grassmann manifolds Gk(C n q ). These algebras are shown to be homogeneous spaces of standard quantum groups and are also quantum principle bundles in the sense of T. Brzeziński and S. Majid [1].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2012
ISSN: 2075-1680
DOI: 10.3390/axioms1020201